The Linear Arboricity of Planar Graphs without 5-, 6-Cycles with Chords

نویسندگان

  • Hongyu Chen
  • Xiang Tan
  • Jian-Liang Wu
  • Guojun Li
چکیده

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G) ≥ 7, la(G) = d 2 e if G has no 5-cycles with chords.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Linear Arboricity of Planar Graphs without 5-Cycles with Chords

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G)≥ 7, la(G) = d(∆(G))/2e if G has no 5-cycles with chords. 2010 Mathematics Subject Classification: 05C15

متن کامل

A Note on The Linear Arboricity of Planar Graphs without 4-Cycles∗

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that if G is a planar graph with ∆(G) ≥ 5 and without 4-cycles, then la(G) = ⌈∆(G) 2 ⌉. Moreover, the bound that ∆(G)≥ 5 is sharp.

متن کامل

The List Linear Arboricity of Planar Graphs

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having ∆ > 13, or for any planar graph with ∆ > 7 and without i-cycles for some i ∈ {3, 4, 5}....

متن کامل

Vertex arboricity of toroidal graphs with a forbidden cycle

The vertex arboricity a(G) of a graph G is the minimum k such that V (G) can be partitioned into k sets where each set induces a forest. For a planar graph G, it is known that a(G) ≤ 3. In two recent papers, it was proved that planar graphs without k-cycles for some k ∈ {3, 4, 5, 6, 7} have vertex arboricity at most 2. For a toroidal graph G, it is known that a(G) ≤ 4. Let us consider the follo...

متن کامل

The linear arboricity of planar graphs with maximum degree at least 5

Let G be a planar graph with maximum degree ∆ ≥ 5. It is proved that la(G) = d∆(G)/2e if (1) any 4-cycle is not adjacent to an i-cycle for any i ∈ {3, 4, 5} or (2) G has no intersecting 4-cycles and intersecting i-cycles for some i ∈ {3, 6}. 2010 Mathematics Subject Classification: 05C15

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2013