The Linear Arboricity of Planar Graphs without 5-, 6-Cycles with Chords
نویسندگان
چکیده
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G) ≥ 7, la(G) = d 2 e if G has no 5-cycles with chords.
منابع مشابه
The Linear Arboricity of Planar Graphs without 5-Cycles with Chords
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G)≥ 7, la(G) = d(∆(G))/2e if G has no 5-cycles with chords. 2010 Mathematics Subject Classification: 05C15
متن کاملA Note on The Linear Arboricity of Planar Graphs without 4-Cycles∗
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that if G is a planar graph with ∆(G) ≥ 5 and without 4-cycles, then la(G) = ⌈∆(G) 2 ⌉. Moreover, the bound that ∆(G)≥ 5 is sharp.
متن کاملThe List Linear Arboricity of Planar Graphs
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having ∆ > 13, or for any planar graph with ∆ > 7 and without i-cycles for some i ∈ {3, 4, 5}....
متن کاملVertex arboricity of toroidal graphs with a forbidden cycle
The vertex arboricity a(G) of a graph G is the minimum k such that V (G) can be partitioned into k sets where each set induces a forest. For a planar graph G, it is known that a(G) ≤ 3. In two recent papers, it was proved that planar graphs without k-cycles for some k ∈ {3, 4, 5, 6, 7} have vertex arboricity at most 2. For a toroidal graph G, it is known that a(G) ≤ 4. Let us consider the follo...
متن کاملThe linear arboricity of planar graphs with maximum degree at least 5
Let G be a planar graph with maximum degree ∆ ≥ 5. It is proved that la(G) = d∆(G)/2e if (1) any 4-cycle is not adjacent to an i-cycle for any i ∈ {3, 4, 5} or (2) G has no intersecting 4-cycles and intersecting i-cycles for some i ∈ {3, 6}. 2010 Mathematics Subject Classification: 05C15
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 29 شماره
صفحات -
تاریخ انتشار 2013